1,800円以上の注文で送料無料

はじめての統計データ分析 の商品レビュー

3.8

5件のお客様レビュー

  1. 5つ

    0

  2. 4つ

    4

  3. 3つ

    1

  4. 2つ

    0

  5. 1つ

    0

レビューを投稿

2023/02/15

その通り、統計がそこまで分からなくても入門からなんとなくデータ分析ができるように書かれています。もう少しかゆいところに手が届くともっと手軽にデータ分析ができそうです。 現在の統計学的仮説検定は未だに論争が終わっておらずいびつな形を残しているためp値で有意差が出たところで本当にそれ...

その通り、統計がそこまで分からなくても入門からなんとなくデータ分析ができるように書かれています。もう少しかゆいところに手が届くともっと手軽にデータ分析ができそうです。 現在の統計学的仮説検定は未だに論争が終わっておらずいびつな形を残しているためp値で有意差が出たところで本当にそれが役に立つ保証がありません。このことが再現性の乏しい意義の分からない学術論文の氾濫につながっております。もちろんベイズにも問題はありますが、実感があり感覚的にも分かりやすく再現性があるというだけでも価値のある分析です。コードを使うところは敷居が高いですがそこを越えられれば広く普通の人が使える形となり、この本を参考に意義のある未来予測をしていけるのではないかと思います。 なお、付録はWindowsの文字コードなのでLinuxとMacではまず文字コードを変換してから使わなければ文字化けで動きません。変換さえちゃんとしていれば動いています。

Posted byブクログ

2021/03/23

下注の説明で、記号の読み方は本文に入れてもよかった。2単位の統計の授業用とあるが、少し難しいような気もする。ベイズ統計学を学ぶだけならば、もっとやさしい初歩の本も必要かもしれない。

Posted byブクログ

2017/01/19

統計学におけるベイズ的アプローチは、当初、高度なモデリング領域において急成長した。有意性検定では、まったく太刀打ちできない領域だったからだ。ベイズ的アプローチは勢力を拡大していったが、統計学の初歩の領域では、有意性検定による手続化が完成しており、社会で活躍している人材は、教える側...

統計学におけるベイズ的アプローチは、当初、高度なモデリング領域において急成長した。有意性検定では、まったく太刀打ちできない領域だったからだ。ベイズ的アプローチは勢力を拡大していったが、統計学の初歩の領域では、有意性検定による手続化が完成しており、社会で活躍している人材は、教える側も含めて例外なく有意性検定と頻度論で統計教育を受けている。このままでは、有意性検定と頻度論から入門し、ベイズモデリングを中級から学ぶというねじれた統計教育が標準となりかねない。そのため、入門的範囲をベイズ的アプローチで置き換え、中級から高度なモデリング領域へのつなぎ目のない学習系列の基礎を提供するものである。

Posted byブクログ

2017/01/06

ベイズの定理等は知っていましたが、ベイズ的な統計分析の存在を知るのは本書及び姉妹本の「基礎からのベイズ統計学」(以下、「緑本」と呼称。)が初めてであり、従来的な統計分析との違いや分かりやすさに感心しました。 ベイズ的分析の概要については、一応本書だけでも理解できます。 しかし...

ベイズの定理等は知っていましたが、ベイズ的な統計分析の存在を知るのは本書及び姉妹本の「基礎からのベイズ統計学」(以下、「緑本」と呼称。)が初めてであり、従来的な統計分析との違いや分かりやすさに感心しました。 ベイズ的分析の概要については、一応本書だけでも理解できます。 しかし、実際に自らの分析にベイズ的手法を使用できるようにためには、まず緑本を読んでMCMCによる事後確率の計算法の概略を理解し、その上でStan※を導入して(導入法等は緑本に記載)、事後確率の計算を実際に自ら行えるようになってから本書を読んた方が良いと思います。 ※ベイズ分析等を行うためのR(統計用の言語)上のソフトウェア というのも、本書は3章から6章(終章)まで、ベイズ的手法を用いた統計分析(2群の差の推測等)のやり方と結果の説明にほぼ終始しており、これらを単に眺めているだけではへーで終わり何も身につかないからです(実際、計算は全てStanにより行われており、Stanを用いずに本書に示される計算結果を本書の数式から導き出すことは困難であるため、計算結果を導けないとただ単に結果をへーと眺め続けるだけになると思われます)。 実際にStanを用いて章末問題を解きながら読み進めることにより、実際の問題を解く際に何を考える必要があるかや、問題を如何にStanでモデル化するかを理解することができます。 実際私も本書を2章くらいまで読んでから、示される結果をどう自分で計算すればよいかわからないもどかしさのため読むのを中断し、緑本を丸々読み終えてStanをある程度使えるようになってから残りの章を読みました。

Posted byブクログ

2016/09/19

これからはベイズ流の統計アプローチが必須。教えるためにも査読するためにも,自分が研究するためにも必須。もう後回しにしていられない。

Posted byブクログ